3.6.8 \(\int \frac {(c+d x+e x^2+f x^3) \sqrt {a+b x^4}}{x^9} \, dx\) [508]

Optimal. Leaf size=400 \[ -\frac {1}{840} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right ) \sqrt {a+b x^4}-\frac {b c \sqrt {a+b x^4}}{16 a x^4}-\frac {2 b d \sqrt {a+b x^4}}{21 a x^3}-\frac {b e \sqrt {a+b x^4}}{6 a x^2}-\frac {2 b f \sqrt {a+b x^4}}{5 a x}+\frac {2 b^{3/2} f x \sqrt {a+b x^4}}{5 a \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {b^2 c \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{16 a^{3/2}}-\frac {2 b^{5/4} f \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 a^{3/4} \sqrt {a+b x^4}}-\frac {b^{5/4} \left (5 \sqrt {b} d-21 \sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{105 a^{5/4} \sqrt {a+b x^4}} \]

[Out]

1/16*b^2*c*arctanh((b*x^4+a)^(1/2)/a^(1/2))/a^(3/2)-1/840*(105*c/x^8+120*d/x^7+140*e/x^6+168*f/x^5)*(b*x^4+a)^
(1/2)-1/16*b*c*(b*x^4+a)^(1/2)/a/x^4-2/21*b*d*(b*x^4+a)^(1/2)/a/x^3-1/6*b*e*(b*x^4+a)^(1/2)/a/x^2-2/5*b*f*(b*x
^4+a)^(1/2)/a/x+2/5*b^(3/2)*f*x*(b*x^4+a)^(1/2)/a/(a^(1/2)+x^2*b^(1/2))-2/5*b^(5/4)*f*(cos(2*arctan(b^(1/4)*x/
a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a
^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(3/4)/(b*x^4+a)^(1/2)-1/105*b^(5/4)*(cos(2*arc
tan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*x/a^(1/4))),1
/2*2^(1/2))*(-21*f*a^(1/2)+5*d*b^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(5/4
)/(b*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.26, antiderivative size = 400, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 13, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.433, Rules used = {14, 1839, 1847, 1266, 849, 821, 272, 65, 214, 1296, 1212, 226, 1210} \begin {gather*} -\frac {b^{5/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (5 \sqrt {b} d-21 \sqrt {a} f\right ) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{105 a^{5/4} \sqrt {a+b x^4}}-\frac {2 b^{5/4} f \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 a^{3/4} \sqrt {a+b x^4}}+\frac {b^2 c \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{16 a^{3/2}}+\frac {2 b^{3/2} f x \sqrt {a+b x^4}}{5 a \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {1}{840} \sqrt {a+b x^4} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right )-\frac {b c \sqrt {a+b x^4}}{16 a x^4}-\frac {2 b d \sqrt {a+b x^4}}{21 a x^3}-\frac {b e \sqrt {a+b x^4}}{6 a x^2}-\frac {2 b f \sqrt {a+b x^4}}{5 a x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^9,x]

[Out]

-1/840*(((105*c)/x^8 + (120*d)/x^7 + (140*e)/x^6 + (168*f)/x^5)*Sqrt[a + b*x^4]) - (b*c*Sqrt[a + b*x^4])/(16*a
*x^4) - (2*b*d*Sqrt[a + b*x^4])/(21*a*x^3) - (b*e*Sqrt[a + b*x^4])/(6*a*x^2) - (2*b*f*Sqrt[a + b*x^4])/(5*a*x)
 + (2*b^(3/2)*f*x*Sqrt[a + b*x^4])/(5*a*(Sqrt[a] + Sqrt[b]*x^2)) + (b^2*c*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(1
6*a^(3/2)) - (2*b^(5/4)*f*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcT
an[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*a^(3/4)*Sqrt[a + b*x^4]) - (b^(5/4)*(5*Sqrt[b]*d - 21*Sqrt[a]*f)*(Sqrt[a] +
Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(105*a
^(5/4)*Sqrt[a + b*x^4])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 821

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g
))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 + a*e^2))), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e
^2), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0
] && EqQ[Simplify[m + 2*p + 3], 0]

Rule 849

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*f - d*g)*
(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/((m + 1)*(c*d^2 + a*e^2))), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[
(d + e*x)^(m + 1)*(a + c*x^2)^p*Simp[(c*d*f + a*e*g)*(m + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; Fr
eeQ[{a, c, d, e, f, g, p}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || Integer
sQ[2*m, 2*p])

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1212

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1266

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m
 - 1)/2)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x] && IntegerQ[(m + 1)/2]

Rule 1296

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d*(f*x)^(m + 1)*((a
 + c*x^4)^(p + 1)/(a*f*(m + 1))), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + c*x^4)^p*(a*e*(m + 1) -
c*d*(m + 4*p + 5)*x^2), x], x] /; FreeQ[{a, c, d, e, f, p}, x] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p]
|| IntegerQ[m])

Rule 1839

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Module[{u = IntHide[x^m*Pq, x]}, Simp[u*(a +
 b*x^n)^p, x] - Dist[b*n*p, Int[x^(m + n)*(a + b*x^n)^(p - 1)*ExpandToSum[u/x^(m + 1), x], x], x]] /; FreeQ[{a
, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && GtQ[p, 0] && LtQ[m + Expon[Pq, x] + 1, 0]

Rule 1847

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[
Sum[((c*x)^(m + j)/c^j)*Sum[Coeff[Pq, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {
j, 0, n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rubi steps

\begin {align*} \int \frac {\left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4}}{x^9} \, dx &=-\frac {1}{840} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right ) \sqrt {a+b x^4}-(2 b) \int \frac {-\frac {c}{8}-\frac {d x}{7}-\frac {e x^2}{6}-\frac {f x^3}{5}}{x^5 \sqrt {a+b x^4}} \, dx\\ &=-\frac {1}{840} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right ) \sqrt {a+b x^4}-(2 b) \int \left (\frac {-\frac {c}{8}-\frac {e x^2}{6}}{x^5 \sqrt {a+b x^4}}+\frac {-\frac {d}{7}-\frac {f x^2}{5}}{x^4 \sqrt {a+b x^4}}\right ) \, dx\\ &=-\frac {1}{840} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right ) \sqrt {a+b x^4}-(2 b) \int \frac {-\frac {c}{8}-\frac {e x^2}{6}}{x^5 \sqrt {a+b x^4}} \, dx-(2 b) \int \frac {-\frac {d}{7}-\frac {f x^2}{5}}{x^4 \sqrt {a+b x^4}} \, dx\\ &=-\frac {1}{840} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right ) \sqrt {a+b x^4}-\frac {2 b d \sqrt {a+b x^4}}{21 a x^3}-b \text {Subst}\left (\int \frac {-\frac {c}{8}-\frac {e x}{6}}{x^3 \sqrt {a+b x^2}} \, dx,x,x^2\right )+\frac {(2 b) \int \frac {\frac {3 a f}{5}-\frac {1}{7} b d x^2}{x^2 \sqrt {a+b x^4}} \, dx}{3 a}\\ &=-\frac {1}{840} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right ) \sqrt {a+b x^4}-\frac {b c \sqrt {a+b x^4}}{16 a x^4}-\frac {2 b d \sqrt {a+b x^4}}{21 a x^3}-\frac {2 b f \sqrt {a+b x^4}}{5 a x}-\frac {(2 b) \int \frac {\frac {a b d}{7}-\frac {3}{5} a b f x^2}{\sqrt {a+b x^4}} \, dx}{3 a^2}+\frac {b \text {Subst}\left (\int \frac {\frac {a e}{3}-\frac {b c x}{8}}{x^2 \sqrt {a+b x^2}} \, dx,x,x^2\right )}{2 a}\\ &=-\frac {1}{840} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right ) \sqrt {a+b x^4}-\frac {b c \sqrt {a+b x^4}}{16 a x^4}-\frac {2 b d \sqrt {a+b x^4}}{21 a x^3}-\frac {b e \sqrt {a+b x^4}}{6 a x^2}-\frac {2 b f \sqrt {a+b x^4}}{5 a x}-\frac {\left (b^2 c\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x^2}} \, dx,x,x^2\right )}{16 a}-\frac {\left (2 b^{3/2} f\right ) \int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}{\sqrt {a+b x^4}} \, dx}{5 \sqrt {a}}-\frac {\left (2 b^{3/2} \left (5 \sqrt {b} d-21 \sqrt {a} f\right )\right ) \int \frac {1}{\sqrt {a+b x^4}} \, dx}{105 a}\\ &=-\frac {1}{840} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right ) \sqrt {a+b x^4}-\frac {b c \sqrt {a+b x^4}}{16 a x^4}-\frac {2 b d \sqrt {a+b x^4}}{21 a x^3}-\frac {b e \sqrt {a+b x^4}}{6 a x^2}-\frac {2 b f \sqrt {a+b x^4}}{5 a x}+\frac {2 b^{3/2} f x \sqrt {a+b x^4}}{5 a \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {2 b^{5/4} f \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 a^{3/4} \sqrt {a+b x^4}}-\frac {b^{5/4} \left (5 \sqrt {b} d-21 \sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{105 a^{5/4} \sqrt {a+b x^4}}-\frac {\left (b^2 c\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,x^4\right )}{32 a}\\ &=-\frac {1}{840} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right ) \sqrt {a+b x^4}-\frac {b c \sqrt {a+b x^4}}{16 a x^4}-\frac {2 b d \sqrt {a+b x^4}}{21 a x^3}-\frac {b e \sqrt {a+b x^4}}{6 a x^2}-\frac {2 b f \sqrt {a+b x^4}}{5 a x}+\frac {2 b^{3/2} f x \sqrt {a+b x^4}}{5 a \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {2 b^{5/4} f \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 a^{3/4} \sqrt {a+b x^4}}-\frac {b^{5/4} \left (5 \sqrt {b} d-21 \sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{105 a^{5/4} \sqrt {a+b x^4}}-\frac {(b c) \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x^4}\right )}{16 a}\\ &=-\frac {1}{840} \left (\frac {105 c}{x^8}+\frac {120 d}{x^7}+\frac {140 e}{x^6}+\frac {168 f}{x^5}\right ) \sqrt {a+b x^4}-\frac {b c \sqrt {a+b x^4}}{16 a x^4}-\frac {2 b d \sqrt {a+b x^4}}{21 a x^3}-\frac {b e \sqrt {a+b x^4}}{6 a x^2}-\frac {2 b f \sqrt {a+b x^4}}{5 a x}+\frac {2 b^{3/2} f x \sqrt {a+b x^4}}{5 a \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {b^2 c \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{16 a^{3/2}}-\frac {2 b^{5/4} f \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 a^{3/4} \sqrt {a+b x^4}}-\frac {b^{5/4} \left (5 \sqrt {b} d-21 \sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{105 a^{5/4} \sqrt {a+b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.39, size = 293, normalized size = 0.73 \begin {gather*} \frac {\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} \left (-\sqrt {a} \left (a+b x^4\right ) \left (b x^4 \left (105 c+8 x \left (20 d+35 e x+84 f x^2\right )\right )+a (210 c+8 x (30 d+7 x (5 e+6 f x)))\right )+105 b^2 c x^8 \sqrt {a+b x^4} \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )\right )+672 a b^{3/2} f x^8 \sqrt {1+\frac {b x^4}{a}} E\left (\left .i \sinh ^{-1}\left (\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} x\right )\right |-1\right )-32 \sqrt {a} b^{3/2} \left (-5 i \sqrt {b} d+21 \sqrt {a} f\right ) x^8 \sqrt {1+\frac {b x^4}{a}} F\left (\left .i \sinh ^{-1}\left (\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} x\right )\right |-1\right )}{1680 a^{3/2} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} x^8 \sqrt {a+b x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^9,x]

[Out]

(Sqrt[(I*Sqrt[b])/Sqrt[a]]*(-(Sqrt[a]*(a + b*x^4)*(b*x^4*(105*c + 8*x*(20*d + 35*e*x + 84*f*x^2)) + a*(210*c +
 8*x*(30*d + 7*x*(5*e + 6*f*x))))) + 105*b^2*c*x^8*Sqrt[a + b*x^4]*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]]) + 672*a*b
^(3/2)*f*x^8*Sqrt[1 + (b*x^4)/a]*EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1] - 32*Sqrt[a]*b^(3/2)*((
-5*I)*Sqrt[b]*d + 21*Sqrt[a]*f)*x^8*Sqrt[1 + (b*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])
/(1680*a^(3/2)*Sqrt[(I*Sqrt[b])/Sqrt[a]]*x^8*Sqrt[a + b*x^4])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.41, size = 348, normalized size = 0.87

method result size
elliptic \(-\frac {c \sqrt {b \,x^{4}+a}}{8 x^{8}}-\frac {d \sqrt {b \,x^{4}+a}}{7 x^{7}}-\frac {e \sqrt {b \,x^{4}+a}}{6 x^{6}}-\frac {f \sqrt {b \,x^{4}+a}}{5 x^{5}}-\frac {b c \sqrt {b \,x^{4}+a}}{16 a \,x^{4}}-\frac {2 b d \sqrt {b \,x^{4}+a}}{21 a \,x^{3}}-\frac {b e \sqrt {b \,x^{4}+a}}{6 a \,x^{2}}-\frac {2 b f \sqrt {b \,x^{4}+a}}{5 a x}-\frac {2 b^{2} d \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{21 a \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {2 i b^{\frac {3}{2}} f \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {b^{2} c \arctanh \left (\frac {\sqrt {a}}{\sqrt {b \,x^{4}+a}}\right )}{16 a^{\frac {3}{2}}}\) \(335\)
risch \(-\frac {\sqrt {b \,x^{4}+a}\, \left (672 b f \,x^{7}+280 b e \,x^{6}+160 b d \,x^{5}+105 b c \,x^{4}+336 a f \,x^{3}+280 a e \,x^{2}+240 a d x +210 a c \right )}{1680 x^{8} a}+\frac {2 i b^{\frac {3}{2}} f \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{5 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {2 i b^{\frac {3}{2}} f \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{5 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {2 b^{2} d \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{21 a \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {b^{2} c \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{16 a^{\frac {3}{2}}}\) \(336\)
default \(f \left (-\frac {\sqrt {b \,x^{4}+a}}{5 x^{5}}-\frac {2 b \sqrt {b \,x^{4}+a}}{5 a x}+\frac {2 i b^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )-\frac {e \left (b \,x^{4}+a \right )^{\frac {3}{2}}}{6 a \,x^{6}}+c \left (-\frac {\left (b \,x^{4}+a \right )^{\frac {3}{2}}}{8 a \,x^{8}}+\frac {b \left (b \,x^{4}+a \right )^{\frac {3}{2}}}{16 a^{2} x^{4}}+\frac {b^{2} \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{16 a^{\frac {3}{2}}}-\frac {b^{2} \sqrt {b \,x^{4}+a}}{16 a^{2}}\right )+d \left (-\frac {\sqrt {b \,x^{4}+a}}{7 x^{7}}-\frac {2 b \sqrt {b \,x^{4}+a}}{21 a \,x^{3}}-\frac {2 b^{2} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{21 a \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )\) \(348\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^9,x,method=_RETURNVERBOSE)

[Out]

f*(-1/5/x^5*(b*x^4+a)^(1/2)-2/5*b/a*(b*x^4+a)^(1/2)/x+2/5*I*b^(3/2)/a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(
1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2)
,I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I)))-1/6*e*(b*x^4+a)^(3/2)/a/x^6+c*(-1/8/a/x^8*(b*x^4+a)^(3/2)+1/16*
b/a^2/x^4*(b*x^4+a)^(3/2)+1/16*b^2/a^(3/2)*ln((2*a+2*a^(1/2)*(b*x^4+a)^(1/2))/x^2)-1/16*b^2/a^2*(b*x^4+a)^(1/2
))+d*(-1/7/x^7*(b*x^4+a)^(1/2)-2/21*b/a*(b*x^4+a)^(1/2)/x^3-2/21*b^2/a/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*
b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^9,x, algorithm="maxima")

[Out]

-1/32*(b^2*log((sqrt(b*x^4 + a) - sqrt(a))/(sqrt(b*x^4 + a) + sqrt(a)))/a^(3/2) + 2*((b*x^4 + a)^(3/2)*b^2 + s
qrt(b*x^4 + a)*a*b^2)/((b*x^4 + a)^2*a - 2*(b*x^4 + a)*a^2 + a^3))*c + integrate(sqrt(b*x^4 + a)*(f*x^2 + x*e
+ d)/x^8, x)

________________________________________________________________________________________

Fricas [A]
time = 0.12, size = 196, normalized size = 0.49 \begin {gather*} -\frac {1344 \, a^{\frac {3}{2}} b f x^{8} \left (-\frac {b}{a}\right )^{\frac {3}{4}} E(\arcsin \left (x \left (-\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) - 105 \, \sqrt {a} b^{2} c x^{8} \log \left (-\frac {b x^{4} + 2 \, \sqrt {b x^{4} + a} \sqrt {a} + 2 \, a}{x^{4}}\right ) - 64 \, {\left (5 \, a b d + 21 \, a b f\right )} \sqrt {a} x^{8} \left (-\frac {b}{a}\right )^{\frac {3}{4}} F(\arcsin \left (x \left (-\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) + 2 \, {\left (672 \, a b f x^{7} + 280 \, a b e x^{6} + 160 \, a b d x^{5} + 105 \, a b c x^{4} + 336 \, a^{2} f x^{3} + 280 \, a^{2} e x^{2} + 240 \, a^{2} d x + 210 \, a^{2} c\right )} \sqrt {b x^{4} + a}}{3360 \, a^{2} x^{8}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^9,x, algorithm="fricas")

[Out]

-1/3360*(1344*a^(3/2)*b*f*x^8*(-b/a)^(3/4)*elliptic_e(arcsin(x*(-b/a)^(1/4)), -1) - 105*sqrt(a)*b^2*c*x^8*log(
-(b*x^4 + 2*sqrt(b*x^4 + a)*sqrt(a) + 2*a)/x^4) - 64*(5*a*b*d + 21*a*b*f)*sqrt(a)*x^8*(-b/a)^(3/4)*elliptic_f(
arcsin(x*(-b/a)^(1/4)), -1) + 2*(672*a*b*f*x^7 + 280*a*b*e*x^6 + 160*a*b*d*x^5 + 105*a*b*c*x^4 + 336*a^2*f*x^3
 + 280*a^2*e*x^2 + 240*a^2*d*x + 210*a^2*c)*sqrt(b*x^4 + a))/(a^2*x^8)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 4.30, size = 246, normalized size = 0.62 \begin {gather*} \frac {\sqrt {a} d \Gamma \left (- \frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {7}{4}, - \frac {1}{2} \\ - \frac {3}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{7} \Gamma \left (- \frac {3}{4}\right )} + \frac {\sqrt {a} f \Gamma \left (- \frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {5}{4}, - \frac {1}{2} \\ - \frac {1}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{5} \Gamma \left (- \frac {1}{4}\right )} - \frac {a c}{8 \sqrt {b} x^{10} \sqrt {\frac {a}{b x^{4}} + 1}} - \frac {3 \sqrt {b} c}{16 x^{6} \sqrt {\frac {a}{b x^{4}} + 1}} - \frac {\sqrt {b} e \sqrt {\frac {a}{b x^{4}} + 1}}{6 x^{4}} - \frac {b^{\frac {3}{2}} c}{16 a x^{2} \sqrt {\frac {a}{b x^{4}} + 1}} - \frac {b^{\frac {3}{2}} e \sqrt {\frac {a}{b x^{4}} + 1}}{6 a} + \frac {b^{2} c \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x^{2}} \right )}}{16 a^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**9,x)

[Out]

sqrt(a)*d*gamma(-7/4)*hyper((-7/4, -1/2), (-3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x**7*gamma(-3/4)) + sqrt(a)*f*
gamma(-5/4)*hyper((-5/4, -1/2), (-1/4,), b*x**4*exp_polar(I*pi)/a)/(4*x**5*gamma(-1/4)) - a*c/(8*sqrt(b)*x**10
*sqrt(a/(b*x**4) + 1)) - 3*sqrt(b)*c/(16*x**6*sqrt(a/(b*x**4) + 1)) - sqrt(b)*e*sqrt(a/(b*x**4) + 1)/(6*x**4)
- b**(3/2)*c/(16*a*x**2*sqrt(a/(b*x**4) + 1)) - b**(3/2)*e*sqrt(a/(b*x**4) + 1)/(6*a) + b**2*c*asinh(sqrt(a)/(
sqrt(b)*x**2))/(16*a**(3/2))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^9,x, algorithm="giac")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + x^2*e + d*x + c)/x^9, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {b\,x^4+a}\,\left (f\,x^3+e\,x^2+d\,x+c\right )}{x^9} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x^4)^(1/2)*(c + d*x + e*x^2 + f*x^3))/x^9,x)

[Out]

int(((a + b*x^4)^(1/2)*(c + d*x + e*x^2 + f*x^3))/x^9, x)

________________________________________________________________________________________